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The compressible vortex pair 
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A numerical solution for the flow field associated with a compressible pair of counter- 
rotating vortices is developed. The compressible, two-dimensional potential equation 
is solved utilizing the numerical method of Osher et al. (1985) for flow regions in 
which a non-zero density exists. Close to the vortex centres, vacuum ‘ cores ’ develop 
owing to the existence of a maximum achievable flow speed in a compressible flow 
field. A special treatment is required to represent these vacuum cores. Typical 
streamline patterns and core boundaries are obtained for upstream Mach numbers as 
high as 0.3, and the formation of weak shocks, predicted by Moore & Pullin (1987), 
is observed. 

1. Introduction 
Since Lord Kelvin’s work, the incompressible vortex pair has represented a classic 

solution of the two-dimensional potential equation. Because this equation is linear, 
the superposition of two counter-rotating vortices located at  the dimensional 
coordinates $ = f h, 2 = 0 with a uniform crossflow yields a closed ‘recirculation cell ’ 
which is approximately elliptic in shape. The resulting solution has application to 
flows over blunt elliptical bodies as well as jet and wake modelling efforts for 
effectively incompressible flows. 

The development of high-speed aerospace vehicles in the twentieth century has 
produced interest in a similar type of representation for the compressible vortex pair. 
The problem has not been deemed tractable until very recently, with the advent of 
high-speed computers and a more thorough understanding of compressible fluid flow. 
The single compressible vortex has been studied over the years by Mack (1959), 
Brown (1965), and Ringleb (1940), and has been described by Shapiro (1953) and 
Kucheman (1978). Compressibility effects on a vortex ring have also been studied by 
Moore (1985), but direct application of these solutions to the compressible vortex 
pair is not straightforward. In  1987, Moore & Pullin made the first attempt to  
construct a solution to the compressible vortex pair itself, as will be discussed below. 

Figure 1 highlights some of the physical differences between the compressible and 
incompressible vortex-pair recirculation cells. The incompressible cell enjoys a 
symmetry about both 2- and $-axes, with intercepts a t  2 = & 4 3 h ,  $ N f 2.09h. The 
compressible cell is complicated by the presence of a vacuum core which surrounds 
each vortex centre, as well as the possibility of a shock existing in the recirculating 
region (for 2 > 0). The vacuum core arises from the fact that there is a maximum 
achievable flow speed in a compressible fluid, a t  which vacuum conditions exist. 
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FIGIJRE 1 .  Comparison of features of (a) incompressible and (b) compressible vortex-pair 
recirculation cells. 

Since for a compressible vortex one can show that qr = constant, where q is the flow 
speed and r the radial distance from the vortex centre, we must have a vacuum 
region surrounding any inviscid compressible vortex in an isentropic flow field. 

In  addition to the complication associated with a vacuum region, Moore & Pullin 
(1987), Manwell (1971), and others have noted the possibility of shocks existing in the 
recirculating region where i > 0, owing to the deceleration of the flow from 
supersonic to subsonic speeds. This factor destroys the symmetry about the $-axis in 
this flow, although symmetry about $ = 0 remains. Also note that compressibility 
affects the i and $ intercept locations and that asymmetries due to the shock can 
cause the intercepts ir and 8, to differ in figure 1.  

In 1987, Moore & Pullin obtained a solution for the compressible vortex pair by 
employing the hodograph equations of transonic flow and mapping the resulting 
solution from the (q,@ hodograph plane to the physical plane. Unfortunately, the 
mapping breaks down for a free-stream Mach number above 0.0875. The contribution 
of the present work is to provide a compressible vortex-pair solution for higher free- 
stream Mach numbers. 

Because of the inability of the Moore & Pullin method to yield solutions a t  fairly low 
Mach number, a new approach is taken here which utilizes a numerical solution in the 
physical (i, $)-plane. The solution technique relies on the assumption that, far from 
the vortex pair, the flow field may be characterized by superposition of a uniform 
stream and a Prandtl-Glauert dipole. The flow is assumed to be isentropic so that a 
velocity potential exists. The two-dimensional full potential equation is solved using 
the method of Osher, Hafez & Whitlow (1985) in the region where non-zero density 
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exists, and an exact solution is provided for the region within the vacuum cores. The 
Osher scheme allows €or the presence of weak shocks, since the entropy jump across 
the shock is third order in the shock strength. 

Section 2 discusses the equations governing flow in the fluid and vacuum regions, 
while $3 describes the discretization and solution of these equations. Results and 
conclusions are presented in $$4 and 5, respectively. 

2. Governing equations in fluid and vacuum regions 
As discussed previously, we consider a two-dimensional, compressible potential 

flow, and shocks, if present, must be weak in order not to violate the constant 
entropy condition. Referring to figure 1, we assume that as $+-a we have flow 
parallel to  the &axis, with conditions u,, M,, and p, representing the velocity, Mach 
number, and density, respectively. Flow variables are non-dimensionalized with 
respect to these upstream conditions, while coordinates 2 and t j  are non- 
dimensionalized with respect to h, becoming x and y, respectively. 

The governing equations are expressed in terms of the dimensionless velocity 
potential, q5, in order that  only a single partial differential equation need be solved. 
We note, as above, that the full nonlinear, two-dimensional potential equation must 
be solved, since perturbation or small-disturbance theory cannot be applied to this 
truly two-dimensional flow in a neighbourhood of the vortex. Under these 
assumptions, the governing equation for q5 (in conservative form) becomes 

(1) 

where p is the local gas density, and subscripts denote partial differentiation. The 
density can be related to the flow speed, q, and the free-stream Mach number, M,, 
using the isentropic relation : 

(Pq5J.z + (PA/ ) l /  = 0, 

p = [ l + ; ( y - l ) w , ( l - q * ) ] 1 ’ ~ - 1  (2) 

where y is the ratio of specific heats (assumed here to  equal 1.4). The flow speed is 
calculated directly from the velocity potential : 

q2 = q5;+$;. (3) 

&nax = 1+2/((~-1)M2,) ,  14) 

One can determine the maximum attainable flow speed, qmax, by setting p = 0 in (2) : 

which demonstrates the fact that qmax decreases with increasing Mach number. For 
a single compressible vortex, Shapiro (1953) demonstrates that qr = r/27c, where f 
is the vortex circulation non-dimensionalized by hu,. Setting q = qmax in this relation 
allows one to  calculate the dimensionless radius of the vacuum core for a single 
vortex, rvac, 

n 

indicating that r,,, increases with upstream Mach number M,.  For this reason, 
the vacuum core will become more prominent as M ,  is increased and will shrink to 
rvac = 0 in the incompressible limit of M ,  = 0. It will be useful here to substitute (4) 
into (5) to obtain 

F 
1 
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Labelling the sonic condition as ( )* we can show that 
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q* = ( ( 2 / M 2 , + y - - l ) / ( y + l ) ) i  (7)  

and p* = p(q*),  as defined in (2). Therefore, when q > q* we have supersonic flow, and 
when q < q* the flow is subsonic. 

As mentioned above, we make use of the Prandtl-Glauert transformation applied 
to a vortex-pair dipole in order to obtain a solution for 9 far from the cell boundary. 
Based on this straightforward transformation, the expression for the compressible, 
non-dimensional velocity potential in the far field becomes 

1. 9ff = a( l -M:) r [  1 $x+ (x"(l-M2,)yZ) 
r X 

For the far-field result to be complete we require a value for the dimensionless 
circulation, r. For the classical incompressible vortex pair, it can be shown that 
r = 47c. Moore & Pullin (1987) derive a correction to this result in the compressible 
case, assuming small vacuum cores : 

This expression for dimensionless circulation is used by these researchers when the 
result for q5pp is required. Although the relation holds only for small cores, we shall 
apply it for the case of higher Mach numbers (and hence larger cores) as an initial 
guess in an iteration process since the correction is small, even for higher values of 
Mm. Results will prove to be insensitive to the circulation far from the cell, where the 
result applies in any case. Finally, we note that (8) provides excellent initial values 
for 9 when used as an input to the overall iterative solution method (see $3). 

The equation governing 9 within the vacuum regions is not as easily defined; we 
are not aware of any prior formulations of such a relation. Vacuum regions have been 
simulated in some blast wave calculations, but they arise only in numerical schemes 
owing to the large drop in pressure across the wave. To gain some insight, consider 
the non-conservative form of the velocity potential equation as derived in Anderson 
(1982), for example : 

where c2 = yp/p represents the square of the sound speed in the fluid. Now since the 
flow is isentropic, p - py, so that c must vanish as p vanishes in the vacuum region. 
Under this limit (c --f 0) the potential equation (10) becomes 

( 1 1 )  9: 9 x x  + 9; 9 , y  + 29x 9t/ 9 x y  = 0, 

V.V(iq2) = 0, 

which is actually nonlinearly degenerate. In  vector notation, (1  1) reduces to 

which appears to provide no additional information (consistent with the degeneracy) 
since q = qma, = const. in the vacuum core. But simply from the definition of q we 
have 

which is recognized as the eikonal equation of geometric optics. Exact solutions to 
this equation are easily obtained ; hence 9 within the core can, in principle, be found 
exactly. 
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As a final note in the flow-field description, we derive the relation between the 
compressible stream function and the velocity potential. The compressible stream 
function is defined : 

$y = (P /Po)#z ,  (13) 

~x = - @ / P o )  9 y >  (14) 

where po corresponds to  the stagnation density. Integrating (13) with respect to y and 
(14) with respect to x, and requiring $ = 0 on the symmetry plane, leads to the 
following expression for the stream function in terms of the velocity potential : 

where the arbitrary factor of 0.5 has been omitted. This equation can be used to 
determine streamlines once q5 and p are known throughout the grid. 

3. Analysis and discretization of governing equations 
From the foregoing discussion we can now formulate the complete mathematical 

problem needed to describe the flow field associated with the compressible vortex 
pair. As already noted, the flow is symmetric with respect to the z-axis, so the formal 
mathematical description is given as the solution to ( 1 )  in the half-plane above the 
x-axis (external to the vacuum core) and the solution to (12) within the vacuum core. 
The precise boundary conditions for (1) are 

r 
1 

4n( 1 -M2,); 9, + 
as 

# v + O  as y + m ,  

&(x, 0) = 0 for all x, 

#(x, y) = #,(x, y) on the vacuum core boundary, (lad) 

where # c ,  the value of the dimensionless velocity potential a t  the vacuum core 
boundary, is thus far unknown. The first two conditions, (16a) and (16b), are 
consistent with the far-field condition (8). The last of these conditions, (16d), can also 
be viewed as the boundary condition for (12); that is, we require continuity of q5 a t  
the core boundary. We shall see below that this condition cannot be met exactly. 

There are several important aspects of this problem that merit discussion prior to  
attempting a numerical solution. First, it follows from (2) and (3) that p in (1) is a 
function of #, y ,  andM,, thus it does not actually represent a separate variable. On 
the other hand, the presence of p in (1) results in a significant nonlinearity. Similarly, 
qmax in (12) is obtained from (4) as a function of y andM, only. The most significant 
point regarding the overall problem is that the vacuum core boundary is not known 
a priori and must be found as part of the solution. In  addition, from (6) we see that 
the dimensionless circulation r will be involved in specifying the size of the core 
region. r itself is not known, however, except for very small values of M ,  for which 
the core is small and (9) is valid. These features all influence the nature of the solution 
algorithm, and in particular lead to some modification of the boundary conditions 
employed for (l), as discussed in the following subsection. 
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FIGURE 2. Computational domain for numerical calculation. 

3.1. The Jluid region 

In  the fluid region, external to  the vacuum core, the governing equation, (l) ,  is 
elliptic far from the core, but in a neighbourhood of the core it changes type to 
hyperbolic as the flow becomes supersonic. This implies that special care will be 
required in discretizing this equation. On the other hand, sufficiently far from the 
core the flow is uniformly subsonic (and, in fact, nearly incompressible) and is 
governed by the small-disturbance form of the potential equation. The exact solution 
to this equation far from the vortices is given in (8), and the availability of such a 
solution permits us to solve (1) on a finite domain, say ( -xbnd, xbnd) x [0,  ybnd), and 
to use (8) to provide Dirichlet conditions on all boundaries except the symmetry 
plane. The main restriction on this approach is that  xbnd and ybnd must be sufficiently 
large that the assumptions of small-disturbance theory are valid. It is important to  
note, however, that  the formula to be used for evaluating the Dirichlet conditions 
contains the unknown circulation, r. The complete formulation of the boundary 
conditions associated with the finite fluid region thus replaces conditions (16a, b )  
with 

$(X> Y) = $ * A X >  Y) (17) 

a t  the outer boundaries of the computational domain. The problem is presented 
schematically in figure 2, in which we take ybnd = xbnd. The presence of a branch cut 
is noted since this also must be properly taken into account in any numerical 
treatment. 

We shall present the solution procedure for the fluid region problem under the 
assumption that r, #c, and the core boundary are known. We develop an exact 
expression for $c and an associated prescription for the core boundary in the next 
subsection. It is interesting to note that essentially all of the aspects of this fluid 
region problem are present in a very different problem treated by Shankar et al. 
(1987), and our approach closely parallels theirs. In  particular, under the assumptions 
that we have made thus far, the two most difficult parts of the computational 
problem are the transformation to generalized coordinates, and the treatment of 
type changes in (l) ,  including weak shocks in its solution. The first of these is needed 
to provide an accurate solution of the core boundary and implementation of any 
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appropriate boundary conditions thereon ; we have already noted the implications of 
the second of these. 

Equation (1) can be written in generalized coordinates as 

($@5)t+($@T) T = 0, 

where @{ and @,, are the contravariant velocity components in the generalized 
coordinate directions, 6 and 7, and are defined as 

@c = (x,2+Y,2)q55+(xgY5+xTYT)q5?, 

@?) = (xtY5+xTYT)q5t+(x52+Yj52)q5T. 

J G xtyV- XT y5 
In  these expressions, 

is the Jacobian of the inverse transformation (from computational to physical 
coordinates), T-l: ( [ , y ) + ( x ,  y), and q5( and q5,, are obtained from q5z and q5v via 
the chain rule. Construction of T-l is carried out numerically via transfinite inter- 
polation (see Thompson, Warzi & Mastin 1985) and maps (<, y)  E [ - 1,1] x [0,2] to 
( x ,  y) E [ -xbnd, xbnd] x [0, xbnd], such that [ -+, 81 x [i, 3 maps to the core boundary. 
Hence, the transformation is a boundary-fitted coordinate system, fitted to the 
boundary of the vacuum core. 

The discretization of (18) is done analogously to the approach taken in Shankar 
et al. (1987), the main difference here being that we seek steady solutions and hence 
employ a pseudo-transient representation, rather than the time-accurate approach of 
Shankar et al. Thus, we write (18) as 

and construct a backward Euler temporal discretization, 

where k is the pseudo-time step, k = AT, and the superscripts denote pseudo-time 
indices, or equivalently, iteration counters. Because p is a function of q5, iterations are 
often useful within a pseudo-time step. A t  each such iteration we linearize (20) by 
evaluating p with the previous iterate of 4, and write the result as 

In  this expression, I is the identity matrix, 0 denotes evaluation at the previous 
iteration, and 8q5 = q5,+l - q 5 O .  We note that when q5O -f the right-hand side of (21) 
is precisely (20), and thus is equal to zero. It follows that (21) is in the form of a 
Newton iteration with the term in brackets on the left-hand side being the Jacobian 
matrix of the function on the right-hand side, whose zero is to be found. It is because 
of the form of (21) that we have been able to neglect metric information arising from 
generalized coordinates on the left-hand side. In  particular, it is well known that 
Newton iterations are convergent (at least locally) even when the exact Jacobian 
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matrix is not used. Thus, simple, convenient, and stable spatial discretizations can 
be employed on the left-hand side of (21), and more sophisticated and accurate 
methods will be applied on the right-hand side. We shall, however, retain 
conservation form on both sides of the equation. 

I n  the discrete approximation of ( Z l ) ,  first-order upwind differencing is employed 
on the left-hand side to adequately handle the type change (and hence qualitative 
solution properties with respect to wave propagation) of (1). Switching from upwind 
to downwind differencing is based on the contravariant velocity components, @[ and 
e7, rather than on $ x  and $g. This generalized coordinate metric information is found 
to be necessary in order to guarantee unconditional stability of the pseudo-time 
marching. 

The discrete form of the right-hand side of (21) is obtained using the Osher flux 
biasing procedure (see Osher et al. 1985), but in generalized coordinates as done by 
Shankar et al. (1987). The advantage of this scheme is its ability to automatically 
handle type changes in the potential equation, and sharply resolve weak shocks, 
while maintaining formal second-order accuracy away from shocks. Details of this 
method are provided in the Appendix. 

The only remaining detail in the treatment of the fluid region is the approximation 
a t  the branch cut. Along x = 0, the solution for an incompressible vortex pair in a 
uniform stream produces the following dimensionless velocity potential at x = 0 : 

0 (Y> 11 

$inc(O> y) = *+r (Y = 1) i *if (y < 1). 

Here the plus sign corresponds to the right half-plane, and the minus sign is for the 
left half-plane, with the difference in sign due to the branch cut existing for y < 1. 
This incompressible solution is used as a first approximation to the velocity potential 
in this region. The computational procedure then updates $-values along the branch 
cut  as if the approach t o  this location were from the right half-plane. The $-values 
required on the left-hand side of the branch cut are obtained by linear extrapolation 
from values adjacent to x = 0 on the right-hand side. Then, to ensure continuity in 
y-components of velocity along the branch cut, $-values approaching from the left 
are taken to be the negative of those approaching from the right. Of course, this 
procedure is applied only to that segment of the branch cut lying outside the vacuum 
core. 

3.2. The vacuum core 
As already noted, the equation for $ inside the vacuum core is the eikonal equation. 
Exact solution can be found from the method of characteristics (see Garabedian 
1964), but here we shall make use of a rather simple form of the solution that can be 
obtained by inspection. In particular, i t  is clear that  (12) is satisfied by any function 
$ of the form 

where u, v and C are constants, and 

$(s,y) = u x + v ( y - l ) + C ,  (22) 

Moreover, because we expect the velocity in the core to be related to that in the fluid 
near the core, it appears that u = $ x .  It is a t  this point that  we recognize a basic 
deficiency with (22 )  : namely, that  $z changes sign across the line y = 1, and $g 
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changes sign across x = 0. Thus, the constants u and v in (22) can only be constant 
in magnitude, and we must view (22 )  as a weak solution to (12) with jump 
discontinuities due to required changes a t  x = 0 and y = 1. There are four separate 
pieces to this solution, and there are correspondingly four additional arbitrary 
constants, C,,  C,,  C,, and C,. 

We next observe that merely setting u equal to q5, does little to solve our complete 
problem because q5, must be obtained from the numerical solution to the problem in 
the fluid region, and this will require data from the core. It can be shown that u is 
related to the core geometry and the circulation, r, in a specific way. In  particular, 
if we circumscribe the core with a rectangle of sides D, and D, and evaluate the 
circulation, we obtain 

r z  2 [ u D , + ( q ~ a x - u 2 ) ~ D , ] .  (23) 

This result is not exact because we have taken u and v to be constant in magnitude 
around the path of integration, and part of this path lies off the core boundary where 
the velocity components differ somewhat from those in the core. It will be apparent 
from numerical results presented in $4 that  the result of this discrepancy is small. 
Thus, we can solve (23) for u as if equality holds, and obtain 

Dx T+D,[4qLa,(Di +DE) - r2]i 
2 ( D i + D i )  

U =  

Hence u is determined uniquely if and only if 

This constraint provides a bound on the size of the vacuum core because D,  and D, 
are, by definition, the extent of the core in the x- and y-directions, respectively. The 
similarity of (24) to (6) should be noted. I n  particular, if we take D, = D, = 2rVac we 
have 

r 

which differs from the incompressible case by approximately 10%. It also follows 
from (24)  that 

Equation (25), in conjunction with (22) and the proper choice of signs on u and v, 
determines q5c within the vacuum core up to a constant to be set in each of the four 
regions. 

The four constants are chosen to  make q5 as nearly continuous as possible when 
passing from the fluid region to the vacuum core. This is accomplished by linearly 
extrapolating fluid region values of q5 to the core boundary at four different points 
around the core, corresponding to the four corners of the core in the computational 
domain, and choosing values of C ,  (m = 1, . . . ,4) to match these extrapolated values. 
Hence, q5, is now completely determined within the core. It is also noteworthy that 
q5, is not continuous around the boundary of the core, although this turns out to be 
of little importance because q5, is used only a t  discrete points by the solution 
procedure for the fluid region. 

12 FLM 220 
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The remaining task associated with analysis of the core region is determination of 
the core boundary. A boundary-fixed coordinate system is employed in the present 
study, and in order to generate the generalized coordinates of this system, the nature 
of the core shape must be prescribed. To accomplish this we employ two assumptions 
to complement the information contained in (24). The first of these arises from a 
careful examination of the vacuum core boundaries predicted by Moore & Pullin 
(1987). It is found that in general the radius of the predicted vacuum core is 
essentially the same as would be calculated from (6) for the incompressible case, that 
is, D, = D, = 2rVac. Moreover, our own calculations confirm what Moore & Pullin 
assumed regarding symmetry of the core with respect to the y-axis, that is, 
D, = D,,.+D,,,, with D,,L = D,,,. Here L and R subscripts denote left and right 
sides of the core, respectively. I n  addition, if we set D, = D,3T+D,,B, with T and B 
denoting top and bottom, we find that D,,T < D,,B, again consistent with the 
observation of Moore & Pullin (1987). These observations, along with (24), the 
requirement for a unique determination of core velocity, suggest that a reasonable 
representation of the core boundary might be a generalized ellipse with semi-axes 
Dx,L,  D,,,, D,,T and Dy,B ,  so that the problem of specifying the core can be reduced 
to finding these four quantities. 

Our preceding remarks suggest that  D, = D, should hold to a good approximation, 
hence this is used for an initial guess, but it is not required in subsequent iterations. 
I n  addition, if we define to be the average flow speed in the fluid at the top of the 
core, and analogously for the bottom, it is reasonable to assume that D,,T - l/qT 
and D,,B - i/qB for a vortical flow field. We then obtain 

Dx,L and D,,, are found in a manner similar to that employed by Heister (1988), 
except that the test q < qmax is carried out only along the horizontal axis of 
the vacuum core, i.e. along the line y = 1 .  As mentioned earlier, we always find that 
Dx,L = D,,,, although our procedure does not require this. We then have 
D, = D,>,+D,,, for use in (26), which is the same value used for D, in (27). 

Finally, we note that since the values of D, and D, are obtained as a by-product 
of the computed velocity potential q5 from a previous estimate of the core geometry, 
the values may not satisfy the geometric constraint, (24), needed to  guarantee a 
unique solution to  (12). This occurs in the first step of the calculation because the 
initial core geometry is based on the solution to the small-disturbance equation 
rather than on the solution to the full potential equation, and it can occur in later 
steps because the circulation, r, may change from one pseudo-time step to the next. 
To remedy the situation, then, solution for a value a must be found, where 

yielding 

The generalized ellipse semiaxes are then resealed by the value of a. 
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3.3. Solution algorithm 

In the preceding subsections the treatment of the fluid and vacuum core regions of 
the compressible vortex-pair flow field is discussed under the assumption that the 
circulation is known. Tis  required for setting the far-field boundary conditions in the 
fluid region computations, and it appears explicitly in formulae associated with the 
size of the vacuum core. For very small M ,  an accurate approximation is provided 
by (S), but for larger M,, say M ,  2 0.1, this may not be accurate. Thus, the overall 
computational procedure requires determination of r as part of the solution, Because 
the flow is assumed inviscid and approximately isentropic, r will be the same for any 
closed loop encircling the vacuum core, so if the correct value of r has been chosen 
to prescribe the far-field boundary conditions, we should obtain the same value by 
integrating the velocity field around an arbitrary path enclosing the vortex core. 
This velocity field also depends on M,, through qma, and the vortex core properties, 
so that the prescribed and calculated values of f will not coincide if the prescribed 
value is not consistent with the value of M,. 

It is easy to show that an integration of the velocity field over a path one grid point 
away from the core boundary in the computational domain results in the expression 

where i,, is the (-index of the core centre, j, is the starting index of the core in the 
7-direction, and bc refers to a branch-cut value. But, as already noted, the calculated 
values of 9 depend on 1: Thus, (29) provides a fixed-point iteration for r: 

P+l= G ( P ) ,  

where G is the right-hand side of (29). This provides the final expression needed to 
compute a solution to the complete problem posed a t  the beginning of this section. 

4. Results 
As mentioned above, treatment of the vacuum region has not previously been 

attempted, and for this reason it is desirable to examine the core boundary shape 
predicted by the code. A rationale has been developed whereby the viability of the 
vacuum region computational approach is assessed by comparing core boundary 
results with Moore & Pullin’s (1987) predictions. Because Moore & Pullin are only 
able to obtain results up to M ,  = 0.0875, our predictive tests are limited to this 
value. A small discretization step size (Ax = 0.0125) is required in order to resolve the 
small core associated with this free-stream Mach number. Typical run times are 
approximately one minute on an IBM 3090-6008 for the 161 x 161 grid required in 
this case. 

The vacuum-region solution described in the previous section provides a good 
comparison with Moore & Pullin’s results, as shown in figure 3. At free-stream Mach 
numbers above 0.04, the numerical solution tends to slightly overpredict the height 
of the vacuum core boundary above y = 1. If the solution by Moore & Pullin is 
considered to be the correct core shape, then this discrepancy is to be expected, since 
the upper portion of the core boundary is approximated by two generalized quarter- 
ellipses. The rest of the core boundary is represented quite accurately by the present 
calculation, however, and we find that the slight discrepancy a t  the top of the core 
for higher Mach numbers has a negligible effect on the prediction of the fluid region. 
Higher-Mach-number cases are thus run with reasonable confidence in their accuracy. 

12-2 
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Present study 
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FIGURE 3. Comparison of computed vacuum core boundary with results of 
Moore & Pullin (1987). 
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FIGURE 4. Vacuum core boundary and velocity vectors for M ,  = 0.1. 

Results for the flow field external to the vacuum core are presented in figures 4-7. 
Figures 4 and 5 present velocity vector plots and streamline patterns, respectively, 
calculated for M ,  = 0.1, while figures 6 and 7 present results for M ,  = 0.3. Some 
smoothing is required above the vacuum core along x = 0 owing to the presence of 
the branch cut. In  figure 5 we see that the streamline patterns are nearly symmetric 
about the y-axis, as in the case of the incompressible vortex pair, while in figure 7 ,  
slight asymmetries are seen to develop, which increase in magnitude with M,. These 
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FIGURE 5. Streamline pattern for M ,  = 0.1 
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FIGURE 6. Vacuum core boundary and velocity vectors for M ,  = 0.3. 

are believed to be associated with a weak shock to the right of x = 0, as noted in 
figure 1. Results cannot be achieved easily above M ,  = 0.3 because the vacuum core 
(and its associated errors) has grown to be a dominant feature of the cell and actually 
can exceed the recirculation cell boundaries. 

Another interesting feature of the M ,  = 0.3 results is a weak shock which appears 
in the recirculating region, as predicted by Moore & Pullin (1987) and Manwell 
(1971). The approximate shock location is noted in the schematic diagram in figure 
1. The actual shock strength is greatest in the centre and vanishes as one traverses 
the shock lines to either end. 

The growth in vacuum core size is demonstrated in figure 8, which presents core 
boundary shapes for M, = 0.1, 0.2, 0.3, and 0.4. The core tends to be elongated 
slightly toward the origin. While inaccuracies in the model are such that results for 
M ,  = 0.4 and above are very approximate, core size predictions are fairly insensitive 
to the approximation for r a n d  t'o vacuum-region representation, and for this reason 
the M ,  = 0.4 result is presented. 

X 
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FIGURE 7 .  Streamline pattern for M ,  = 0.3. 
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FIGURE 8. Predicted vacuum core boundaries a t  higher free-stream Mach numbers 
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5. Conclusions 
The solutions presented in this paper cannot be considered to be the final word on 

the compressible vortex pair, but instead should be viewed as a step toward gaining 
a better understanding of this complex and most interesting flow field. In  a sense, we 
have used numerical means to extend the significant contributions of Moore & Pullin 
(1987) in this area to flows with free-stream Mach numbers as high as 0.3. In 
addition, our results have, for the first time, noted the position of the shock in the 
recirculating region and the Mach number at which this shock starts to appear. 
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As noted in $3, the vacuum core boundary treatment currently employed is only 
approximate, and this treatment causes inaccuracies in results, shown in figure 3. It 
is hoped that publication of this work will generate new ideas for treatment of this 
boundary, which could lead to a more complete solution of this flow field. 

In  spite of problems a t  the vacuum boundary, the code developed in this study 
provides a robust scheme for calculating two-dimensional compressible flows by 
using the solution for the PrandtlLGlauert dipole far from the region in which the 
vortices are present: and the two-dimensional full potential equation in the region of 
recirculating flow. A similar procedure could be used to study a compressible line 
source in a uniform stream, or other basic two-dimensional compressible flow fields. 

The authors wish to acknowledge helpful discussions with Professor S. Osher of 
the Department of Mathematics UCLA. This work has been supported by NASA 
Ames/Dryden Research Center under Grant NCC 2-374. 

Appendix. Application of the Osher flux biasing procedure 
The discrete formulae used in the present computations incorporating the flux 

biasing procedure after Osher et al. (1985) and Shankar et al. (1987) may be 
summarized as follows. We begin by defining forward and backward differences in 
the computational coordinates in the usual way: 

$C,f  = ( $ i + l , j - + i , j ) / h ,  $s,b = ($ i , j -$ i - l , j ) /h j  

where h = A6 = A7 is the uniform grid spacing in the computational domain. 
Analogous formulae hold for the 7-derivatives. We then construct the 'clipped ' 
forward and backward approximations to the contravariant velocities as 

@(,f = min[(X,2+y,2)$f,f-(xsYC+xtYt)$r,f,01, (A 1) 
@l, b = max [(.," $6, b - ("6 Y[+Xp $7, b, O1, (A 2) 

etc. The next step is to construct the modified densities of the Osher scheme. As in 
Shankar et al. (1987) we define an intermediate density, p", based on the streamwise 
flux biasing formula 

where Q = (@:+@;): 
and 

for q < q* 

Here, the asterisk denotes sonic values as given by (2) and (7).  Finally, we denote the 
discretized version of p" as q,ii, 1 = 1, . . ., 4 : 

1 1 
F1,i.j = -{ ( P q 1 i . j - p  [@5, i , i ( (pq)~i - (Pq)~--1 , , )+  @v,~,~((pq)~j+l-(pq)~j- l )~} ,  

pi, 5 Q 2 , j  

3 2 ,  t , j  = 
- (Pq) i , j  +- [@s , i , j ( (pq )T+l , j -  (pq)cj)  + @ v , t , j ( ( p q ) < j + l -  (pq)<j -1)1] ,  

Pi,j { Qi,j 

1 
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I n  these expressions the contravariant velocities are evaluated as the difference 
between the backward and forward values, (A l),  (A 2). 

We note that for M < 1 (and hence q < q*),  there is no biasing, and the 4 simply 
reduce to the local density. Furthermore, we remark that the qi,i have been 
calculated in physical coordinates using first-order upwinding throughout the 
domain, as is required by Osher’s scheme in the supersonic region. In  addition, in the 
region immediately adjacent to the vacuum core (all grid points within three points 
of the core boundary in the computational domain), the are smoothed with a low- 
pass filter often used as a restriction operator in multigrid methods (see Hackbusch 
1985) prior to their use in constructing the 4 : 

q. t ,?  . = “ 16 ~ ~ - l , ~ - 1 + ~ i - 1 , ~ + l + ~ i + l , ~ - 1 + ~ i + l , ~ + l + 2 ( ~ i - l , j + ~ i , ~ - 1  + q i , i + l + q i + l , J ) + 4 q i , i l .  

In Heister (1988) the q5i,i were filtered, but this has been found to be unnecessary in 
the present algorithm. 

We can now approximate the right-hand side of (21) at each grid point on the 
interior of the fluid region as 

Bi,j = $:,j-$tj+k[(’l@~.b). z+l , j - ( ’ I  @ 5 , b ) i , 3 + ( ~ ~ @ 5 , f ) i , j - ( ( F 2  @ E , f ) i - l , j  

+ ( ~ 3 @ ~ , b ) ~ , ~ - l - ( ~ 3 @ ~ , b ) ~ , ~ + ( ’ ~ ~ ~ , f ) ~ , j - ( ’ ~ @ ~ , f ) i , ~ - l l .  (A 3, 
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